£ 3 1] NANYANG
et | TECHNOLOGICAL
)5 UNIVERSITY

“7 SINGAPORE

Demystifying the Vulnerability Propagation and Its Evolution
via Dependency Trees in the NPM Ecosystem

Chengwei Liu* Sen Chent Lingling Fan
College of Intelligence and College of Intelligence and College of Cyber Science,
Computing, Tianjin University Computing, Tianjin University Nankai
Tianjin, China Tianjin, China University
chengweiO01@e.ntu.ed senchen@tju.edu.cn Tianjin, China

linglingfan@nankai.edu.cn

ICSE 2022

Background

| | B e R T et S T b LR e e o
N 1] “ /5 L 4

. B e = B s | u, 170,000+ —fi— 1in4 NS 700M |

| "fm Known vulnerabilities BEEIEH Databreaches due to [ptmsashill Largest corporate
| ‘ Packagist . NuGet Rubygems CocosPods | 1797 '1;"’:? e = open source breach ever I
ey a Pacs * Facs - ’ ae e vulnerabilities
| I ! '
| § o, g Bower .. CPAN . P | I Rapid Growth of Security Vulnerabilities :
__ R Somn s s S B ST a T Bea bt anst T e e
I I
3 Clojars = CRAMN - MACEIGE .;,“"J conda
| @ zwea R = s pacnag IDE o Ry reMPacages |
I I
Meteor ’ Hex Homebrew Puppet

| Carthage SEY SwittPM @ Julia E=% Eim |

I a 25 I m Pach .. - M o I r ———————————————————————— 'I

| e 9 Racket E Nimble '! Haxelib |] 2 '_ « 86.55 78% 8.2 |

¥ P s . ; ¥ Frack P' il the average Vulnerabiliti
i I @, " gperendency ree sice found i transitive) b i
PureScript ! jo of NP p P

| g n Mc:ﬂr:l.!. q Ingiude I ° NFM packages dependencies dependency in NPM |
13 - :] i

' Fast Devel f OSS Envi ! . Complex Dependency Relations |

j Fast Development o nvironment , T s gy, riaoingpirtocd, shidrclzpisioimy Afrigiapainii NP -

The vulunerability impact could be excessively amplified by dependencies, and
demystifying such impact and remediating it is urgent.

Related Work

T

1.

2.
3.
4

Existing research

only considers direct dependencies [52] or

reasoning transitive dependencies based on reachability analysis [85]
which neglects the NPM-specific dependency resolution,resulting in wrongly resolved dependencies.
Existing approaches can’t provide precise dependencies

only retrieve dependency trees from real installation rather than static reasoning.[30] [1]

his Work has:

Completeness. DVGraph covers 100% of libraries and 99.96% of versions of the metadata database
Accuracy. Considers NPM-specific dependency resolution rules

Efficiency. static

Dynamic updates. time dimension

[52] Alexandre Decan, Tom Mens, and Eleni Constantinou. 2018. On the impact of security vulnerabilities in the NPM package
dependency network. In Proceedings of the 15th International Conference on Mining Software Repositories. 181-191.

[85] Markus Zimmermann, Cristian-Alexandru Staicu, Cam Tenny, and Michael Pradel.2019. Small world with high risks: A
study of security threats in the npm ecosystem. In 28th USENIX Security Symposium (USENIX Security 19). 995-1010.

[30] 2021. Snyk. https://snyk.io/

[1] 2021. BlackDuck. https://www.blackducksoftware.com/

Motivation example

Why it is unreliable to conduct vulnerability propagation
analysis via existing reachability analysis?

(1) D has four versions: 1.0.0, 1.1.0, 1.2.0, 2.0.0
(2) According to node-semver, ~1.1.0 represents “<1.2.0 and >=1.1.0", "1.1.0
represents “<2.0.0 and >=1.1.0", “*” represents any version.

Figure 2: An example of NPM dependency resolution

It is highly possible that the status of root packages
being affected by vulnerability via dependencies
also changes over time.

00

L)]
Release ! o 'Release

500 =00

B@1.0.1 C@I.G.DE

B@1.0.1 C@!o.l

| e i T T W —————

Figure 6: An example of vulnerability propagation
evolution via dependency tree changes (DTCs)

L]

Overview

——————————————————————————————————— i i
DVGraph Tool Cnnstruction: : Empirical Study | | Implications & Solutions :
Construction 1 RQI: Vulnerability ! : Package I

I S | . l

Dependency Tree | Propagation in i v/ ERRities ;

Resolution | E>l Dependency Trees :ED: Package ““~. = Third-party :

. ! "1 RQEvolution of 1 ! Manager Auditors |

Vulnerable Path | 1 Vulnerability Propagation : : P”:“"dﬁ‘ Package ‘/ remediate:

Identification | : in Dependency Trees | | Consumers I

Figure 1: Overview of our work

1) via dependency constraint parser to construct a complete dependency-vulnerability knowledge graph
(DVGraph) (over 1.14 million libraries and 10.94 million versions), as well as over 800 known CVEs (Common
Vulnerabilities and Exposures) [4] from NVD [11]

2) propose an accurate DVGraph based dependency resolution algorithm (DTResolver) to calculate dependency
trees at any installation time. over 90% of resolved dependency trees being exactly the same comparing to real
installation.

3) conduct an empirical study. unveil the reasons of vulnerabilities being introduced in dependency trees, as well
as possible solutions.

DVGraph

 DVGraph Schema

Version

Vulnerability mf

Id: String id: String
ublic_id: String name: String

Y version: SemVer
ibatfects released_time: Datetime

a5 |is_deprecated: Boolean

libdeps

< / < J
Library depends U
|
id: String I
name: String
dist-tags: Map

leased_time: Datetime,

upper, lower, default

—_——— e ——— e — o —

“dependency_consfraint: String,
, Satisfied_versions: List |

. — — —

Figure 3: Schema of NPM dependency-vulnerability graph

| major: String |
| minor: String |
patch: String |

rLegends)

ENWE Entity
(——JData Structure

" e i
25 _1 Properties

— Relations

. >y

* Graph statistics
Table 1: Graph statistics
Elements #Instances | Elements #Instances

Lib
Ver
Vul

1,147 558 has
10,939 334 upper
815 lower 0 .804.406

10,939,334
9,804,406

depends
default
libdeps

62,232,906 affects 23,217
61,940,009 libaffects 830
4216,742 Graph size 15.15GB

Table 1: Definitions of node entities and relations

Criteria

Descriptions

Lib

Ver

Vul

has
upper
lower
depends
default
libdeps
affects
libaffects

Library entity contains pro e.g. lib_id, lib_name, dist-tags).

Version entity contains proper! ased_time, is deprecated).

Vulnerability Ly contains properties and public_id).

ents library Liby has a re

sion Very

ext semantically higher rele ersion of Ver, isVer,

sed v

s previous semantically lower re

ion of Ver, is Ver,.
Ver,—Lib

Ver, >V

ents version Very ha

dency on library Liby, which contains properties such as dependency_constraint and satisfied_versions.

. assuming LibyhasVer,, ersion Ver, depends on library Liby, and currently Ver; is the semantically highe ersion of library Lib,
Lib;—Lib; presents 3 Vi € Ly, V. dependsonLa.
Vul — V. presents that Vulnerability Vul directly affects version V.

Vul — L, presents that 3V € Ly, Vul affects V.

DVGraph

* DVGraph ConstruCtion Piplines

Change Stream

=

Update
.,,l Subscriber

Crawler Parser

Metadata Pipeline

NFPM CouchDB
| CVE CVE
%—Ni Crawler Cleaner
CVE Pipeline
NVD DB e i

= -
) \
< o

| ‘ Metadata Dependency

CVE Cross Comparison i

Mappings & Validation
CVE Triage Pipeline

+ Metadata DE

Inner Library Cross Library
Insertion Adjustment

%)

DVGraph
Figure 4: Automated data processing framework

s}

Graph Pipeline

.

7

Main Challenges:

1. Dependency Parser
2. CVE Mappings

3. DVGraph Updates

DTResolver

Dependency Tree Resolution

_ Key Rules
= = . 1. Recursively resolving dependencies by
= BFS
2. Allocating folders(Logical Tree and
Physical Tree)
3. Preference on non-deprecated
versions
e 4. extend time dimension by adding
filters on release time
5.

DTResolve are also extended to resolve dependency trees that should be installed at any given installtion time.

DTResolver

Algorithm

Algorithm 1: Dependency Tree Resolution

=W R e

(- TN - - B B - T

11

13

14
15

16

Input: G: DVGraph, r: given root package, /l t: given time
Output: DT, : Resolved dependency tree of r

Dir « new InstallDirectory()

root_path «— 0,Q « 0, Deps «— 0

Dir.install(r, root_path)

Q.push(r)

// 1. Traverse all resolved dependency nodes by BFS, and simulate
real installation to create folders for packages

while O # 0 do

lv — Q.pop()

deps «— {e € G : e5,c =luA e.type = depends}

foreach depend € deps do

vers < depend.satisfied_versions

deplib « dependgs;

if 3 v;. v; € DirnN vers A v;.dir_path C lu.dir_path then

dep
r «— (CREATE lo — u;)
Deps.push(r)
else
selected «— v;.v; € versA(Yv;.vj € versAi # jAv; > vj)
/l Avj.released time < t

16

17
18

19

20
21
22

23

24

25
26
27

28
29
30
31

if Dirn vers = () then
| install_path « root_path
else
foreach subpath C Ilvdir_path do
if =3n.n € subpath A (deplib — has — n) then
install_path < subpath
L break

Dir.install(selected, install_pat h)
de

r «— (CREATE lv i 4 selected)

Deps.push(r)

Q.push(selected)

// 2. Recover a dependency tree from install directory and CREATED
Deps relations

Ver, « {lv: lv € Dir}

Dep, « Deps

DT,o0t «— <Very, Dep,>

return DT,

DTResolver

Vulnerable Path Identification

a vulnerable path extractor by reverse Depth First Search (DFS)

Root package: A Root package: A

one-step «—
vulnerable path

N

Direct 3_5tep
dependency vulnerable path
@ Vulnerable point .
(a) Dependency tree of package A (b) Vulnerable Paths

Figure 5: Examples of dependency tree and vulnerable
paths (each node represents a package with an exact
version)

Validation

Evaluation of DTResolver

Table 2: Library selection criteria for graph valiadation

Criteria Descriptions #Instances
; most forked JavaScript projects from Top 2K
Mgt Fore GitHub Libraries
. JavaScript projects that have the most Top 2K

Most Star n: : .

> stars from GitHub Libraries
Most Downloaded in the past packages that have most downloads Top 2K
' = in the past Libraries
Most Downloaded in the last packages that have most downloads Top 2K
three years from 2017 to 2019 Libraries
Most Downloaded in the last packages that have most downloads Top 2K
year in 2019 Libraries
Most Dependencies Libraries libraries .lhal have the most direct de- Tf)p 'ZK
pendencies Libraries
Most Depentients Libanries libraries that have been mostly de- Top 2K
pended on Libraries
Nicat Devendenatss Virelngs versions that have the most direct de- Top 20K
StEeP o pendencies Versions
Most Dependents Versions versions that have been mostly de- Top 20K
pended on Versions

[24] 2021. npm-remote-Is. https://www.npmjs.com/package/npm-remote-Is

103,609 versions(almost 1% of the
entire NPM ecosystem) from
15673 libraries are sorted out.

90.58% of Graph Trees are exactly
the same with Install Tree.

In comparison, only 53.33% of
Rmote Trees are same with Install
Tree.[24] (npm-remote-Is)

There are 2 main reasons That cause
the mismatch of differences
between InstallTree and GraphTree.
1. Installtion may not be complete
2. Dependency tree from npmIs
are deduped

Validation
Evaluation of Vulnerability Detection and Vulnerable Path Identification.

31,913 library versions from our test set contains at least one vulnerable dependency, 208,129 vulnerable
points in total.

DTResolver and npm-remote-Is have high coverage on these
identified vulnerable points (98.1% v.s. 97.7%)

324,718 individual vulnerable paths are derived from these vulnerable points

300,691 of them are identified by DTResolver (92.60%),but only
254,298 vulnerable paths of them are identified by npm-
remote-Is (78.31%)

Empirical Study

RQ1: (Vulnerability Propagation via Dependency Trees)
(Dependency Trees of all 10M library versions)

RQ1.1 How many packages are affected by existing known vulnerabilities in the NPM ecosystem?
RQ1.2 How do vulnerabilities propagate to affect root packages via dependency tree?

RQ2: (Vulnerability Propagation Evolution in Dependency Trees)
(Dependency Trees Changes(DTCs) from release to current for 50K library versions from validation
set,10.9 dep trees in total)

RQ2.1 How does known vulnerability propagation evolve over time?

RQ2.2 How long do vulnerabilities live in dependency trees?

RQ2.3 Why are there still a considerable portion of CVEs not removed?

RQ2.4 Example of remediation by avoiding vulnerability introduction (DTReme).

Empirical Study

RQ1: (Vulnerability Propagation via Dependency Trees)
RQ1.1 How many packages are affected by existing known vulnerabilities in the NPM ecosystem?

1. Vulnerabilities are widely existing in dependencies of NPM packages as statically proved
* one-quarter versions of 19.96% libraries across the ecosystem.
* the latests versions of 16% libraries.

RQ1.2 How do vulnerabilities propagate to affect root packages via dependency tree?

2. vulnerabilities from direct dependencies are widely neglected (over 30% affected library versions)
most of the vulnerable paths go through limited direct dependencies, which could be utilized to cut

off vulnerable paths.

3. Averagely, one vulnerable points introduce 8 vulnerable paths

Empirical Study

RQ2: (Vulnerability Propagation Evolution in Dependency Trees)

RQ2.1 How does known vulnerability propagation evolve over time?
4. Known vulnerabilities are causing a larger impact across the NPM ecosystem over time.

RQ2.2 How long do vulnerabilities live

in dependency trees? e — / i
5. Most of the CVEs (93%) have already o] = e e / b
been introduced to dependency trees 30000 . £ g
before they were discovered, and the S ;/ E mz%
fixed versions of these CVEs (87%) were 10000 & i mfé
also mostly released before CVE publish. 0 // e .
6. Only 60% of CVEs in dependency Time

trees are removed automatically by (a) Evolution of library versions (b) Evolution of CVE density in
DTCs, and even so, it still takes over one and CVEs dependency trees

year for each CVE to get removed. Figure 7: Evolution of known CVE propagation

Empirical Study

RQ2: (Vulnerability Propagation Evolution in Dependency Trees)

RQ2.3 Why are there still a considerable portion of CVEs not removed?

7. The root cause of CVE introduction and elimination is the change of dependency trees, which
requires two preconditions: 1) nodes in the dependency tree have new versions released; 2) the
newly released version satisfies the corresponding dependency constraint.

8. Outdated Maintenance (provider) and Unsuitable Dependency Constraint (consumer) are the
main reasons that hinder the automated vulnerability removal in dependency trees over time.

RQ2.4 Example of remediation by avoiding vulnerability introduction (DTReme).

9. Considerable user projects contain unavoidable vulunerabilities even though we have
exhausted all possible dependency trees(ref. DTReme results).

Existing remediation:
DTReme
For vulnerable node | in the dependency tree,
remediate | by upgrading or downgrading B

Dependency Tree Remediation
and C to avoid introducing vulnerable I.

T iy
N———————————,

(1) UpDown: Forward vulnerability checking
(2) BottomUp:Backward installed package tracking
> until resolve to clean tree

}
D,

“/

(c

Table 3: Comparison of remediation effects between npm
audit fix and our remediation

“{ DTReme
Generally,we exhaustively iterate possible alternatives for
each vulnerable paths by:

of vulnerable points in Dependency Trees # of projects

DefDep = 0 198
DefDep = AuditDep = RemeDep >0 86 (15)
DefDep >AuditDep = RemeDep 69 (1)
DefDep >= AuditDep >RemeDep 12

DefDep >= RemeDep >AuditDep 30

Conclusion

1. Consider time dimension
2. As our next work’s Related work.

THANKS & QUESTIONS

Paper: https://arxiv.org/abs/2201.03981
Websites: https://sites.google.com/view/npm-vulnerability-study/

Presented by LinLi

UL

M3 NpmiRIRZZ =A%)

MR R ERIZ RS SN B SER YIRS AN [E]

tree -dapg<Z LARPREIRIG VS H—1 B FAra BRIV SS
npm Isap <L LARPREIR A U5 H— R E PR A KB E EE

npm2 FHVERIRZZLALH npm2 RIS RAUKEBIER KRR ENZ RS\

APP
A ‘. moa-=¢
L— nod e modules
Avi.0 Bv1.0 L mod-b
b directories
(jessie)ag dubs@localhost:~/Projects/npm-sandbox/npm3/examplel$ npm 1ls
Y Y : ; .
bxamplel@l.0.0 /home/ag dubs/Projects/npm-sandbox/npm3/examplel
- mod-a@l.0.0
Cv1.0 Cv2.0

— mod-b@1.0.0
mod-c@l.0.0
— mod-b@2.0.0

ERFHRTMRBE

figz NpmiRIRZZ 2=t

npm3 FHIRER Z 2L -

il

LERREN"RERET, EXNE—RRELEERBIRIER, FEXE_RRIIERIER—=

R

123]

npm2

APP

y a

Av1.0 Bv1.0

Y Y

Cv1.0 Cv2.0

LR RPN CARIR R ZS A [E]

Av1.0

npm3
APP
Y -
= Cvi0 Bv1.0
Y
Cv2.0

fEnpm34, EANBHAZERNKHIEIRR
[E, FRLAB v1.0§IC v1.0ORHBREXZR

ab
/':\'ﬁb

2ERERATRISRE, EANE—RASERER, AR, FEEE MR
BAELERENREREY, ERIFE—EREHEERR, ERAFRER,

BREEESHRE

