
Demystifying the Vulnerability Propagation and Its Evolution
via Dependency Trees in the NPM Ecosystem

Chengwei Liu∗
College of Intelligence and

Computing, Tianjin University
Tianjin, China

chengwei001@e.ntu.edu.sg

Sen Chen†
College of Intelligence and

Computing, Tianjin University
Tianjin, China

senchen@tju.edu.cn

Lingling Fan
College of Cyber Science,

Nankai
University

Tianjin, China
linglingfan@nankai.edu.cn

ICSE 2022

The vulunerability impact could be excessively amplified by dependencies, and
demystifying such impact and remediating it is urgent.

[52] Alexandre Decan, Tom Mens, and Eleni Constantinou. 2018. On the impact of security vulnerabilities in the NPM package
dependency network. In Proceedings of the 15th International Conference on Mining Software Repositories. 181–191.
[85] Markus Zimmermann, Cristian-Alexandru Staicu, Cam Tenny, and Michael Pradel.2019. Small world with high risks: A
study of security threats in the npm ecosystem. In 28th USENIX Security Symposium (USENIX Security 19). 995–1010.
[30] 2021. Snyk. https://snyk.io/
[1] 2021. BlackDuck. https://www.blackducksoftware.com/

Existing research
only considers direct dependencies [52] or
reasoning transitive dependencies based on reachability analysis [85]

which neglects the NPM-specific dependency resolution,resulting in wrongly resolved dependencies.
Existing approaches can’t provide precise dependencies

only retrieve dependency trees from real installation rather than static reasoning.[30] [1]

This Work has:
1. Completeness. DVGraph covers 100% of libraries and 99.96% of versions of the metadata database
2. Accuracy. Considers NPM-specific dependency resolution rules
3. Efficiency. static
4. Dynamic updates. time dimension

Why it is unreliable to conduct vulnerability propagation
analysis via existing reachability analysis?

It is highly possible that the status of root packages
being affected by vulnerability via dependencies
also changes over time.

 1）via dependency constraint parser to construct a complete dependency-vulnerability knowledge graph
(DVGraph) (over 1.14 million libraries and 10.94 million versions), as well as over 800 known CVEs (Common
Vulnerabilities and Exposures) [4] from NVD [11]
2) propose an accurate DVGraph based dependency resolution algorithm (DTResolver) to calculate dependency
trees at any installation time. over 90% of resolved dependency trees being exactly the same comparing to real
installation.
3) conduct an empirical study. unveil the reasons of vulnerabilities being introduced in dependency trees, as well
as possible solutions.

• DVGraph Schema • Graph statistics

• DVGraph ConstruCtion Piplines

Main Challenges:
1. Dependency Parser
2. CVE Mappings
3. DVGraph Updates

Key Rules
1. Recursively resolving dependencies by

BFS
2. Allocating folders(Logical Tree and

Physical Tree)
3. Preference on non-deprecated

versions
4. extend time dimension by adding

filters on release time
5. ...

DTResolve are also extended to resolve dependency trees that should be installed at any given installtion time.

Dependency Tree Resolution

Algorithm

a vulnerable path extractor by reverse Depth First Search (DFS)

Vulnerable Path Identification

Evaluation of DTResolver 103,609 versions(almost 1% of the
entire NPM ecosystem) from
15673 libraries are sorted out.

90.58% of Graph Trees are exactly
the same with Install Tree.
In comparison, only 53.33% of
Rmote Trees are same with Install
Tree.[24] ()

[24] 2021. npm-remote-ls. https://www.npmjs.com/package/npm-remote-ls

There are 2 main reasons That cause
the mismatch of differences
between InstallTree and GraphTree.
1、Installtion may not be complete
2、Dependency tree from npm ls
are deduped

Evaluation of Vulnerability Detection and Vulnerable Path Identification.

31,913 library versions from our test set contains at least one vulnerable dependency，208,129 vulnerable
points in total.

324,718 individual vulnerable paths are derived from these vulnerable points

DTResolver and npm-remote-ls have high coverage on these
identified vulnerable points (98.1% v.s. 97.7%)

300,691 of them are identified by DTResolver (92.60%),but only
254,298 vulnerable paths of them are identified by npm-
remote-ls (78.31%)

RQ1: (Vulnerability Propagation via Dependency Trees)
(Dependency Trees of all 10M library versions)

RQ1.1 How many packages are affected by existing known vulnerabilities in the NPM ecosystem?
RQ1.2 How do vulnerabilities propagate to affect root packages via dependency tree?

RQ2: (Vulnerability Propagation Evolution in Dependency Trees)
(Dependency Trees Changes(DTCs) from release to current for 50K library versions from validation

set,10.9 dep trees in total）

RQ2.1 How does known vulnerability propagation evolve over time?
RQ2.2 How long do vulnerabilities live in dependency trees?
RQ2.3 Why are there still a considerable portion of CVEs not removed?
RQ2.4 Example of remediation by avoiding vulnerability introduction (DTReme).

RQ1.1 How many packages are affected by existing known vulnerabilities in the NPM ecosystem?

1、Vulnerabilities are widely existing in dependencies of NPM packages as statically proved
• one-quarter versions of 19.96% libraries across the ecosystem.
• the latests versions of 16% libraries.

RQ1.2 How do vulnerabilities propagate to affect root packages via dependency tree?

2、vulnerabilities from direct dependencies are widely neglected (over 30% affected library versions)
most of the vulnerable paths go through limited direct dependencies, which could be utilized to cut

off vulnerable paths.
3、Averagely, one vulnerable points introduce 8 vulnerable paths

RQ1: (Vulnerability Propagation via Dependency Trees)

RQ2: (Vulnerability Propagation Evolution in Dependency Trees)

RQ2.1 How does known vulnerability propagation evolve over time?
4、 Known vulnerabilities are causing a larger impact across the NPM ecosystem over time.

RQ2.2 How long do vulnerabilities live
in dependency trees?
5、Most of the CVEs (93%) have already
been introduced to dependency trees
before they were discovered, and the
fixed versions of these CVEs (87%) were
also mostly released before CVE publish.

6、Only 60% of CVEs in dependency
trees are removed automatically by
DTCs, and even so, it still takes over one
year for each CVE to get removed.

RQ2: (Vulnerability Propagation Evolution in Dependency Trees)

RQ2.3 Why are there still a considerable portion of CVEs not removed?

7、The root cause of CVE introduction and elimination is the change of dependency trees, which
requires two preconditions: 1) nodes in the dependency tree have new versions released; 2) the
newly released version satisfies the corresponding dependency constraint.
8、Outdated Maintenance (provider) and Unsuitable Dependency Constraint (consumer) are the
main reasons that hinder the automated vulnerability removal in dependency trees over time.

RQ2.4 Example of remediation by avoiding vulnerability introduction (DTReme).

9、Considerable user projects contain unavoidable vulunerabilities even though we have
exhausted all possible dependency trees(ref. DTReme results).

Dependency Tree Remediation

Existing remediation:

For vulnerable node I in the dependency tree,
remediate I by upgrading or downgrading B
and C to avoid introducing vulnerable I.

DTReme
Generally,we exhaustively iterate possible alternatives for
each vulnerable paths by:
(1) UpDown: Forward vulnerability checking
(2) BottomUp:Backward installed package tracking
until resolve to clean tree

1、Consider time dimension
2、As our next work’s Related work.

THANKS & QUESTIONS

Presented by LinLi

Paper: https://arxiv.org/abs/2201.03981
Websites: https://sites.google.com/view/npm-vulnerability-study/

依赖树表面的逻辑结构与依赖树真实的物理结构不同

tree -d命令以树状图的方式列出一个项目下所有依赖的物理结构
npm ls命令以树状图的方式列出一个项目下所有依赖的逻辑结构

npm2下的模块安装机制 npm2安装多级的依赖模块采用嵌套的安装方式

冗余

npm3下的模块安装机制：
1.在安装某个二级模块时，若发现第一层级还没有相同名称的模块，便把这第二层级的模块放在第一层
级
2.在安装某个二级模块时，若发现第一层级有相同名称，相同版本的模块，便直接复用那个模块
3.在安装某个二级模块时，若发现第一层级有相同名称，但版本不同的模块，便只能嵌套在自身的父模
块下方

